Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Front Epidemiol ; 4: 1367387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655403

RESUMO

Introduction: Visceral leishmaniasis (VL), a neglected tropical disease that causes substantial morbidity and mortality, is a serious health problem in Ethiopia. Infections are caused by Leishmania (L.) donovani parasites. Most individuals remain asymptomatic, but some develop VL, which is generally fatal if not treated. We identified the area of Metema-Humera in Northwest Ethiopia as a setting in which we could follow migrant workers when they arrived in an endemic area. The demographic characteristics of this population and factors associated with their risk of asymptomatic infection are poorly characterised. Methods: We divided our cohort into individuals who visited this area for the first time (first comers, FC) and those who had already been in this area (repeat comers, RC). We followed them from the beginning (Time 1, T1) to the end of the agricultural season (Time 2, T2), performing tests for sand fly bite exposure (anti-sand fly saliva antibody ELISA) and serology for Leishmania infection (rK39 rapid diagnostic test and the direct agglutination test) at each time point and collecting information on risk factors for infection. Results: Our results show that most migrant workers come from non-endemic areas, are male, young (median age of 20 years) and are farmers or students. At T1, >80% of them had been already exposed to sand fly bites, as shown by the presence of anti-saliva antibodies. However, due to seasonality of sand flies there was no difference in exposure between FC and RC, or between T1 and T2. The serology data showed that at T1, but not at T2, a significantly higher proportion of RC were asymptomatic. Furthermore, 28.6% of FC became asymptomatic between T1 and T2. Over the duration of this study, one FC and one RC developed VL. In multivariable logistic regression of asymptomatic infection at T1, only age and the number of visits to Metema/Humera were significantly associated with asymptomatic infection. Conclusion: A better understanding of the dynamics of parasite transmission and the risk factors associated with the development of asymptomatic infections and potentially VL will be essential for the development of new strategies to prevent leishmaniasis.

2.
Int J Parasitol ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38626865

RESUMO

The interaction between pathogens and vectors' physiology can impact parasite transmission. Studying this interaction at the molecular level can help in developing control strategies. We study leishmaniases, diseases caused by Leishmania parasites transmitted by sand fly vectors, posing a significant global public health concern. Lipophosphoglycan (LPG), the major surface glycoconjugate of Leishmania, has been described to have several roles throughout the parasite's life cycle, both in the insect and vertebrate hosts. In addition, the sand fly midgut possesses a rich microbiota expressing lipopolysaccharides (LPS). However, the effect of LPG and LPS on the gene expression of sand fly midgut proteins or immunity effectors has not yet been documented. We experimentally fed Lutzomyia longipalpis and Phlebotomus papatasi sand flies with blood containing purified LPG from Leishmania infantum, Leishmania major, or LPS from Escherichia coli. The effect on the expression of genes encoding gut proteins galectin and mucin, digestive enzymes trypsin and chymotrypsin, and antimicrobial peptides (AMPs) attacin and defensins was assessed by quantitative PCR (qPCR). The gene expression of a mucin-like protein in L. longipalpis was increased by L. infantum LPG and E. coli LPS. The gene expression of a galectin was increased in L. longipalpis by L. major LPG, and in P. papatasi by E. coli LPS. Nevertheless, the gene expression of trypsins and chymotrypsins did not significantly change. On the other hand, both L. infantum and L. major LPG significantly enhanced expression of the AMP attacin in both sand fly species and defensin in L. longipalpis. In addition, E. coli LPS increased the expression of attacin and defensin in L. longipalpis. Our study showed that Leishmania LPG and E. coli LPS differentially modulate the expression of sand fly genes involved in gut maintenance and defence. This suggests that the glycoconjugates from microbiota or Leishmania may increase the vector's immune response and the gene expression of a gut coating protein in a permissive vector.

3.
Viruses ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38543761

RESUMO

Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of viruses while little is known about the capacity of New World insects to transmit viruses to humans. Here, we relate the identification of RNA sequences with homology to rhabdovirus nucleocapsids (NcPs) genes, initially in the Lutzomyia longipalpis LL5 cell lineage, named NcP1.1 and NcP2. The Rhabdoviridae family never retrotranscribes its RNA genome to DNA. The sequences here described were identified in cDNA and DNA from LL-5 cells and in adult insects indicating that they are transcribed endogenous viral elements (EVEs). The presence of NcP1.1 and NcP2 in the L. longipalpis genome was confirmed in silico. In addition to showing the genomic location of NcP1.1 and NcP2, we identified another rhabdoviral insertion named NcP1.2. Analysis of small RNA molecules derived from these sequences showed that NcP1.1 and NcP1.2 present a profile consistent with elements targeted by primary piRNAs, while NcP2 was restricted to the degradation profile. The presence of NcP1.1 and NcP2 was investigated in sandfly populations from South America and the Old World. These EVEs are shared by different sandfly populations in South America while none of the Old World species studied presented the insertions.


Assuntos
Leishmaniose , Psychodidae , Rhabdoviridae , Humanos , Animais , América do Sul , RNA , DNA , Brasil
4.
Parasit Vectors ; 17(1): 89, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409043

RESUMO

ParSCo (Parasitology Summer Course) is an intense, 1-week-long summer course organized by the Parasitology Unit of the Department of Veterinary Medicine, University of Bari, Italy, with the support of the World Association for the Advancement of Veterinary Parasitology (WAAVP), the European Veterinary Parasitology College (EVPC) and Parasites and Vectors. The course, which is conducted in southern Italy, is planned for parasitologists and post-graduate students working in the field of parasitology. The course consists of theoretical and practical lessons, which include the collection, identification and diagnosis of parasites of pets, livestock and wildlife. The participants in ParSCo are afforded the opportunity to be involved in clinical examination and sample collection for the diagnosis of parasitic diseases (e.g. leishmaniosis, thelaziosis and many tick-borne diseases) present in the Mediterranean Basin. The course is conducted at Casa di Caccia, a hunting lodge situated in the Gallipoli Cognato Forest near the Basento River in the Basilicata region in southern Italy. In addition to the training purpose, ParSCo is a great opportunity for sharing knowledge and expertise while becoming part of the parasitology community in a pleasant environment. In this editorial, we share some information and celebrate 10 years of ParSCo, looking forward to forthcoming sessions of this unique parasitology summer course.


Assuntos
Doenças Parasitárias em Animais , Animais , Humanos , Doenças Parasitárias em Animais/parasitologia , Estudantes , Gado , Animais Selvagens , Itália/epidemiologia , Parasitologia
5.
PLoS Pathog ; 20(2): e1012054, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38416776

RESUMO

The unicellular parasite Leishmania has a precisely defined cell architecture that is inherited by each subsequent generation, requiring a highly coordinated pattern of duplication and segregation of organelles and cytoskeletal structures. A framework of nuclear division and morphological changes is known from light microscopy, yet this has limited resolution and the intrinsic organisation of organelles within the cell body and their manner of duplication and inheritance is unknown. Using volume electron microscopy approaches, we have produced three-dimensional reconstructions of different promastigote cell cycle stages to give a spatial and quantitative overview of organelle positioning, division and inheritance. The first morphological indications seen in our dataset that a new cell cycle had begun were the assembly of a new flagellum, the duplication of the contractile vacuole and the increase in volume of the nucleus and kinetoplast. We showed that the progression of the cytokinesis furrow created a specific pattern of membrane indentations, while our analysis of sub-pellicular microtubule organisation indicated that there is likely a preferred site of new microtubule insertion. The daughter cells retained these indentations in their cell body for a period post-abscission. By comparing cultured and sand fly derived promastigotes, we found an increase in the number and overall volume of lipid droplets in the promastigotes from the sand fly, reflecting a change in their metabolism to ensure transmissibility to the mammalian host. Our insights into the cell cycle mechanics of Leishmania will support future molecular cell biology analyses of these parasites.


Assuntos
Leishmania mexicana , Leishmania , Parasitos , Psychodidae , Animais , Leishmania mexicana/genética , Ciclo Celular , Divisão Celular , Psychodidae/parasitologia , Mamíferos
6.
PLoS Negl Trop Dis ; 18(1): e0011920, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295092

RESUMO

Sand fly transmitted Leishmania species are responsible for severe, wide ranging, visceral and cutaneous leishmaniases. Genetic exchange can occur among natural Leishmania populations and hybrids can now be produced experimentally, with limitations. Feeding Phlebotomus orientalis or Phlebotomus argentipes on two strains of Leishmania donovani yielded hybrid progeny, selected using double drug resistance and fluorescence markers. Fluorescence activated cell sorting of cultured clones derived from these hybrids indicated diploid progeny. Multilocus sequence typing of the clones showed hybridisation and nuclear heterozygosity, although with inheritance of single haplotypes in a kinetoplastid target. Comparative genomics showed diversity of clonal progeny between single chromosomes, and extraordinary heterozygosity across all 36 chromosomes. Diversity between progeny was seen for the HASPB antigen, which has been noted previously as having implications for design of a therapeutic vaccine. Genomic diversity seen among Leishmania strains and hybrid progeny is of great importance in understanding the epidemiology and control of leishmaniasis. As an outcome of this study we strongly recommend that wider biological archives of different Leishmania species from endemic regions should be established and made available for comparative genomics. However, in parallel, performance of genetic crosses and genomic comparisons should give fundamental insight into the specificity, diversity and limitations of candidate diagnostics, vaccines and drugs, for targeted control of leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Leishmaniose Visceral , Phlebotomus , Psychodidae , Animais , Phlebotomus/genética , Leishmania donovani/genética , Psychodidae/genética , Cruzamentos Genéticos , Genômica , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/epidemiologia
7.
Sci Rep ; 13(1): 21389, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049590

RESUMO

Sandflies (Diptera; Psychodidae) are medical and veterinary vectors that transmit diverse parasitic, viral, and bacterial pathogens. Their identification has always been challenging, particularly at the specific and sub-specific levels, because it relies on examining minute and mostly internal structures. Here, to circumvent such limitations, we have evaluated the accuracy and reliability of Wing Interferential Patterns (WIPs) generated on the surface of sandfly wings in conjunction with deep learning (DL) procedures to assign specimens at various taxonomic levels. Our dataset proves that the method can accurately identify sandflies over other dipteran insects at the family, genus, subgenus, and species level with an accuracy higher than 77.0%, regardless of the taxonomic level challenged. This approach does not require inspection of internal organs to address identification, does not rely on identification keys, and can be implemented under field or near-field conditions, showing promise for sandfly pro-active and passive entomological surveys in an era of scarcity in medical entomologists.


Assuntos
Aprendizado Profundo , Phlebotomus , Psychodidae , Animais , Psychodidae/parasitologia , Reprodutibilidade dos Testes , Phlebotomus/parasitologia , Entomologia
8.
Commun Biol ; 6(1): 1244, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066195

RESUMO

Phlebotomine sand flies (Diptera: Phlebotominae) are the principal vectors of Leishmania spp. (Kinetoplastida: Trypanosomatidae). In Central Europe, Phlebotomus mascittii is the predominant species, but largely understudied. To better understand factors driving its current distribution, we infer patterns of genetic diversity by testing for signals of population expansion based on two mitochondrial genes and model current and past climate and habitat suitability for seven post-glacial maximum periods, taking 19 climatic variables into account. Consequently, we elucidate their connections by environmental-geographical network analysis. Most analyzed populations share a main haplotype tracing back to a single glacial maximum refuge area on the Mediterranean coasts of South France, which is supported by network analysis. The rapid range expansion of Ph. mascittii likely started in the early mid-Holocene epoch until today and its spread possibly followed two routes. The first one was through northern France to Germany and then Belgium, and the second across the Ligurian coast through present-day Slovenia to Austria, toward the northern Balkans. Here we present a combined approach to reveal glacial refugia and post-glacial spread of Ph. mascittii and observed discrepancies between the modelled and the current known distribution might reveal yet overlooked populations and potential further spread.


Assuntos
Leishmania , Phlebotomus , Psychodidae , Animais , Phlebotomus/genética , Insetos Vetores/genética , Europa (Continente)
9.
Front Immunol ; 14: 1162596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022562

RESUMO

Introduction: Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. Methods results and discussion: In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. Conclusions: Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.


Assuntos
Leishmania infantum , Leishmaniose , Phlebotomus , Psychodidae , Animais , Feminino , Meios de Cultivo Condicionados , Mamíferos , Terapia de Imunossupressão
10.
Parasitol Res ; 122(10): 2279-2286, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37490143

RESUMO

RNA viruses play an important role in Leishmania biology and virulence. Their presence was documented in three (out of four) Leishmania subgenera. Sauroleishmania of reptiles remained the only underinvestigated group. In this work, we analyzed the viral occurrence in Sauroleishmania spp. and detected RNA viruses in three out of seven isolates under study. These viruses were of two families-Narnaviridae and Totiviridae. Phylogenetic inferences demonstrated that totiviruses from L. adleri and L. tarentolae group together within a larger cluster of LRV2s, while a narnavirus of L. gymnodactyli appeared as a phylogenetic relative of narnaviruses of Blechomonas spp. Taken together, our work not only expanded the range of trypanosomatids that can host RNA viruses but also shed new light on the evolution and potential routes of viral transmission in these flagellates.


Assuntos
Leishmania , Vírus de RNA , Humanos , Animais , Filogenia , Répteis
11.
Front Physiol ; 14: 1182141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265840

RESUMO

Introduction: Production of different antimicrobial peptides (AMPs) is one of the insect's prominent defense strategies, regulated mainly by Toll and immune deficiency (IMD) humoral pathways. Here we focused mainly on two AMPs of Phlebotomus papatasi, vector of Leishmania major parasites, their association with the relish transcription factor and the effective participation on Leishmania infection. Methods and results: We further characterized the role of previously described gut-specific P. papatasi defensin (PpDef1) and identified the second defensin (PpDef2) expressed in various sand fly tissues. Using the RNAi-mediated gene silencing, we report that the silencing of PpDef1 gene or simultaneous silencing of both defensin genes (PpDef1 and PpDef2) resulted in increased parasite levels in the sand fly (detectable by PCR) and higher sand fly mortality. In addition, we knocked down relish, the sole transcription factor of the IMD pathway, to evaluate the association of the IMD pathway with AMPs expression in P. papatasi. We demonstrated that the relish gene knockdown reduced the expression of PpDef2 and attacin, another AMP abundantly expressed in the sand fly body. Conclusions: Altogether, our experiments show the importance of defensins in the sand fly response toward L. major and the role of the IMD pathway in regulating AMPs in P. papatasi.

12.
Int J Parasitol Parasites Wildl ; 21: 69-73, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37144140

RESUMO

Cutaneous leishmaniasis (CL) is the most important neglected disease reported in North Africa, Algeria ranks second in the world with more than 5000 cases per year. In Algeria, two rodent species Psammomys obesus and Meriones shawi, are so far known as proven reservoirs of Leishmania major, however, they are absent in several endemic localities. In this study, we experimentally infected Gerbillus rodents trapped around human dwellings in Illizi, Algeria to assess their susceptibility to L. major. Seven gerbils, morphologically and molecularly identified as Gerbillus amoenus, were intradermally inoculated with 104 parasites derived from culture, monitored for six months and their infectiousness for sand flies was tested by xenodiagnosis. The study revealed that G. amoenus was susceptible to L. major and was able to maintain and transmit the parasites to sand flies tested six months after infection, suggesting the role of this gerbil as a potential reservoir for L. major.

13.
Elife ; 122023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162189

RESUMO

Attachment to a substrate to maintain position in a specific ecological niche is a common strategy across biology, especially for eukaryotic parasites. During development in the sand fly vector, the eukaryotic parasite Leishmania adheres to the stomodeal valve, as the specialised haptomonad form. Dissection of haptomonad adhesion is a critical step for understanding the complete life cycle of Leishmania. Nevertheless, haptomonad studies are limited, as this is a technically challenging life cycle form to investigate. Here, we have combined three-dimensional electron microscopy approaches, including serial block face scanning electron microscopy (SBFSEM) and serial tomography to dissect the organisation and architecture of haptomonads in the sand fly. We showed that the attachment plaque contains distinct structural elements. Using time-lapse light microscopy of in vitro haptomonad-like cells, we identified five stages of haptomonad-like cell differentiation, and showed that calcium is necessary for Leishmania adhesion to the surface in vitro. This study provides the structural and regulatory foundations of Leishmania adhesion, which are critical for a holistic understanding of the Leishmania life cycle.


Assuntos
Leishmania , Psychodidae , Animais , Microscopia Eletrônica
14.
J Gen Virol ; 104(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018120

RESUMO

Sand flies (Diptera: Phlebotominae) are proven vectors of various pathogens of medical and veterinary importance. Although mostly known for their pivotal role in the transmission of parasitic protists of the genus Leishmania that cause leishmaniases, they are also proven or suspected vectors of many arboviruses, some of which threaten human and animal health, causing disorders such as human encephalitis (Chandipura virus) or serious diseases of domestic animals (vesicular stomatitis viruses). We reviewed the literature to summarize the current published information on viruses detected in or isolated from phlebotomine sand flies, excluding the family Phenuiviridae with the genus Phlebovirus, as these have been well investigated and up-to-date reviews are available. Sand fly-borne viruses from four other families (Rhabdoviridae, Flaviviridae, Reoviridae and Peribunyaviridae) and one unclassified group (Negevirus) are reviewed for the first time regarding their distribution in nature, host and vector specificity, and potential natural transmission cycles.


Assuntos
Arbovírus , Phlebovirus , Psychodidae , Rhabdoviridae , Animais , Humanos , Animais Domésticos
15.
Parasit Vectors ; 16(1): 126, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055860

RESUMO

BACKGROUND: Sergentomyia minuta (Diptera: Phlebotominae) is an abundant sand fly species in the Mediterranean basin and a proven vector of reptile parasite Leishmania (Sauroleishmania) tarentolae. Although it feeds preferentially on reptiles, blood meal analyses and detection of Leishmania (Leishmania) infantum DNA in wild-caught S. minuta suggest that occasional feeding may occur on mammals, including humans. Therefore, it is currently suspected as a potential vector of human pathogens. METHODS: A recently established S. minuta colony was allowed to feed on three reptile species (i.e. lizard Podarcis siculus and geckos Tarentola mauritanica and Hemidactylus turcicus) and three mammal species (i.e. mouse, rabbit and human). Sand fly mortality and fecundity were studied in blood-fed females, and the results were compared with Phlebotomus papatasi, vector of Leishmania (L.) major. Blood meal volumes were measured by haemoglobinometry. RESULTS: Sergentomyia minuta fed readily on three reptile species tested, neglected the mouse and the rabbit but took a blood meal on human. However, the percentage of females engorged on human volunteer was low in cage (3%) and feeding on human blood resulted in extended defecation times, higher post-feeding mortality and lower fecundity. The average volumes of blood ingested by females fed on human and gecko were 0.97 µl and 1.02 µl, respectively. Phlebotomus papatasi females readily fed on mouse, rabbit and human volunteer; a lower percentage of females (23%) took blood meal on the T. mauritanica gecko; reptilian blood increased mortality post-feeding but did not affect P. papatasi fecundity. CONCLUSIONS: Anthropophilic behaviour of S. minuta was experimentally demonstrated; although sand fly females prefer reptiles as hosts, they were attracted to the human volunteer and took a relatively high volume of blood. Their feeding times were longer than in sand fly species regularly feeding on mammals and their physiological parameters suggest that S. minuta is not adapted well for digestion of mammalian blood. Nevertheless, the ability to bite humans highlights the necessity of further studies on S. minuta vector competence to elucidate its potential role in circulation of Leishmania and phleboviruses pathogenic to humans.


Assuntos
Leishmania , Lagartos , Phlebotomus , Psychodidae , Feminino , Humanos , Coelhos , Animais , Camundongos , Phlebotomus/parasitologia , Psychodidae/parasitologia , Leishmania/genética , DNA/genética , Mamíferos/genética
16.
Pathogens ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111500

RESUMO

Leishmaniases are neglected diseases caused by protozoans of the genus Leishmania that threaten millions of people worldwide. Cutaneous leishmaniasis (CL) caused by L. major is a typical zoonosis transmitted by phlebotomine sand flies and maintained in rodent reservoirs. The female sand fly was assumed to become infected by feeding on the skin lesion of the host, and the relative contribution of asymptomatic individuals to disease transmission was unknown. In this study, we infected 32 Meriones shawi, North African reservoirs, with a natural dose of L. major obtained from the gut of infected sand flies. Skin manifestations appeared in 90% of the animals, and xenodiagnosis with the proven vector Phlebotomus papatasi showed transmissibility in 67% of the rodents, and 45% were repeatedly infectious to sand flies. Notably, the analysis of 113 xenodiagnostic trials with 2189 sand flies showed no significant difference in the transmissibility of animals in the asymptomatic and symptomatic periods; asymptomatic animals were infectious several weeks before the appearance of skin lesions and several months after their healing. These results clearly confirm that skin lesions are not a prerequisite for vector infection in CL and that asymptomatic animals are an essential source of L. major infection. These data are important for modeling the epidemiology of CL caused by L. major.

17.
PLoS Pathog ; 19(3): e1011283, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996243

RESUMO

Toscana virus (TOSV) (Bunyavirales, Phenuiviridae, Phlebovirus, Toscana phlebovirus) and other related human pathogenic arboviruses are transmitted by phlebotomine sand flies. TOSV has been reported in nations bordering the Mediterranean Sea among other regions. Infection can result in febrile illness as well as meningitis and encephalitis. Understanding vector-arbovirus interactions is crucial to improving our knowledge of how arboviruses spread, and in this context, immune responses that control viral replication play a significant role. Extensive research has been conducted on mosquito vector immunity against arboviruses, with RNA interference (RNAi) and specifically the exogenous siRNA (exo-siRNA) pathway playing a critical role. However, the antiviral immunity of phlebotomine sand flies is less well understood. Here we were able to show that the exo-siRNA pathway is active in a Phlebotomus papatasi-derived cell line. Following TOSV infection, distinctive 21 nucleotide virus-derived small interfering RNAs (vsiRNAs) were detected. We also identified the exo-siRNA effector Ago2 in this cell line, and silencing its expression rendered the exo-siRNA pathway largely inactive. Thus, our data show that this pathway is active as an antiviral response against a sand fly transmitted bunyavirus, TOSV.


Assuntos
Arbovírus , Phlebotomus , Phlebovirus , Psychodidae , Vírus da Febre do Flebótomo Napolitano , Animais , Humanos , Vírus da Febre do Flebótomo Napolitano/genética , Phlebotomus/genética , Psychodidae/genética , Interferência de RNA , Phlebovirus/genética , Arbovírus/genética , RNA Interferente Pequeno/genética
18.
Proc Natl Acad Sci U S A ; 120(10): e2220828120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848551

RESUMO

Trypanosomatid pathogens are transmitted by blood-feeding insects, causing devastating human infections. These parasites show important phenotypic shifts that often impact parasite pathogenicity, tissue tropism, or drug susceptibility. The evolutionary mechanisms that allow for the selection of such adaptive phenotypes remain only poorly investigated. Here, we use Leishmania donovani as a trypanosomatid model pathogen to assess parasite evolutionary adaptation during experimental sand fly infection. Comparing the genome of the parasites before and after sand fly infection revealed a strong population bottleneck effect as judged by allele frequency analysis. Apart from random genetic drift caused by the bottleneck effect, our analyses revealed haplotype and allelic changes during sand fly infection that seem under natural selection given their convergence between independent biological replicates. Our analyses further uncovered signature mutations of oxidative DNA damage in the parasite genomes after sand fly infection, suggesting that Leishmania suffers from oxidative stress inside the insect digestive tract. Our results propose a model of Leishmania genomic adaptation during sand fly infection, with oxidative DNA damage and DNA repair processes likely driving haplotype and allelic selection. The experimental and computational framework presented here provides a useful blueprint to assess evolutionary adaptation of other eukaryotic pathogens inside their insect vectors, such as Plasmodium spp, Trypanosoma brucei, and Trypanosoma cruzi.


Assuntos
Leishmania donovani , Psychodidae , Humanos , Animais , Estresse Oxidativo/genética , Reparo do DNA/genética , Mutação
19.
Pathog Glob Health ; 117(3): 293-307, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35996820

RESUMO

With the current expansion of vector-based research and an increasing number of facilities rearing arthropod vectors and infecting them with pathogens, common measures for containment of arthropods as well as manipulation of pathogens are becoming essential for the design and running of such research facilities to ensure safe work and reproducibility, without compromising experimental feasibility. These guidelines and comments were written by experts of the Infravec2 consortium, a Horizon 2020-funded consortium integrating the most sophisticated European infrastructures for research on arthropod vectors of human and animal diseases. They reflect current good practice across European laboratories with experience of safely handling different mosquito species and the pathogens they transmit. As such, they provide experience-based advice to assess and manage the risks to work safely with mosquitoes and the pathogens they transmit. This document can also form the basis for research with other arthropods, for example, midges, ticks or sandflies, with some modification to reflect specific requirements.


Assuntos
Artrópodes , Culicidae , Animais , Humanos , Reprodutibilidade dos Testes , Mosquitos Vetores , Vetores Artrópodes , Europa (Continente)
20.
Front Cell Infect Microbiol ; 12: 1022448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439224

RESUMO

Leishmania is the unicellular parasite transmitted by phlebotomine sand fly bite. It exists in two different forms; extracellular promastigotes, occurring in the gut of sand flies, and intracellular, round-shaped amastigotes residing mainly in vertebrate macrophages. As amastigotes originating from infected animals are often present in insufficient quality and quantity, two alternative types of amastigotes were introduced for laboratory experiments: axenic amastigotes and amastigotes from macrophages infected in vitro. Nevertheless, there is very little information about the degree of similarity/difference among these three types of amastigotes on proteomic level, whose comparison is crucial for assessing the suitability of using alternative types of amastigotes in experiments. In this study, L. mexicana amastigotes obtained from lesion of infected BALB/c mice were proteomically compared with alternatively cultivated amastigotes (axenic and macrophage-derived ones). Amastigotes of all three types were isolated, individually treated and analysed by LC-MS/MS proteomic analysis with quantification using TMT10-plex isobaric labeling. Significant differences were observed in the abundance of metabolic enzymes, virulence factors and proteins involved in translation and condensation of DNA. The most pronounced differences were observed between axenic amastigotes and lesion-derived amastigotes, macrophage-derived amastigotes were mostly intermediate between axenic and lesion-derived ones.


Assuntos
Leishmania mexicana , Camundongos , Animais , Leishmania mexicana/metabolismo , Proteoma/metabolismo , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...